New in ForeFlight: Checklist, Glide Advisor™️, Light & Dark App Themes, SiriusXM Audio, and More

Featured

ForeFlight 9 is full of features that enhance every phase of flying. Run through checklists with ease and reduce cockpit clutter with ForeFlight Checklist. Glide Advisor™️ helps you locate a safe place to land in the event of engine failure, choose from Light & Dark App Themes for day or night flight, helpful enhancements to Logbook, new SXAR1 integration features, and more. Read on for all the details of the ForeFlight 9 release, now on the App Store!

Consolidate Your Toolset with ForeFlight Checklist

ForeFlight’s integrated checklists keep important safety procedures organized and easily accessible. Your familiar paper checklists are transformed into customizable digital templates allowing you to reduce cockpit clutter and spend less time heads down searching for a particular checklist item. Checklists for every phase of flight are laid out in an interactive, intelligent interface that fits naturally into your flying workflow.

Select from one of the predefined templates derived from aircraft POH manuals or create and edit your own customized collection of checklists. Templates are provided for a variety of fixed-wing and rotorcraft models. A template for the IMSAFE pilot checklist is also available, allowing you to efficiently conduct a personal preflight health assessment.

To run through a checklist, simply tap an item and a green check mark appears. This visual feedback provides an easy way to pick up exactly where you left off with a quick glance. Tap “Skip” to move past an item; this is especially useful if you don’t move through a checklist from A to Z. If you experience an inflight emergency, tap the emergency button to jump immediately to emergency checklist procedures, saving you time and sparing you the hassle of flipping through a stack of paper procedures.

ForeFlight Checklist is a feature of our Basic Plus and Pro Plus subscription plans.

Learn more about ForeFlight Checklist at foreflight.com/checklist.

New Glide Advisor™️ Helps You Quickly Locate a Safe Landing Space

Using terrain, GPS data, winds aloft, and your aircraft’s best glide speed and ratio, ForeFlight shapes a glide range ring around your ownship icon on the moving map display. If you lose engine power, Glide Advisor helps you quickly assess your options. Enable Glide Advisor in the Map Settings menu. To enter your aircraft’s glide ratio and best glide speed, tap the Glide Settings field under Glide Performance. Pro Tip: Pair Glide Advisor with Distance Rings to quickly report your position to ATC. For the ultimate inflight situational awareness experience, combine Glide Advisor with ForeFlight’s Synthetic Vision and Hazard Advisor.

 

glide+SV+dist rings+haz

The Ultimate in Situational Awareness: Glide Advisor, Synthetic Vision, Distance Rings, and Hazard Advisor

 

Reduce Screen Glare with New Dark App Color Theme

We continue to make flying at night easier on your vision with the addition of a new Dark App Color Theme. Turn on the Dark App Color Theme in More > Settings to convert the background color throughout the app from white to dark blue. Important information remains easily visible through the use of highlight colors and prominent white text. Combine the Dark App Color Theme with Color Inversion and a Dark Map Theme for a powerful night setting.

 

color inversion+dark theme 2

A Powerful Night Setting with ForeFlight’s Dark App Color Theme and Color Inversion

 

Logbook Enhancements: Helpful Aircraft List Details and CFI Currency Tracking

When viewing your Aircraft list in Logbook, you will now see details including aircraft make/model, category/class, gear type, and total hours in that aircraft. It’s a helpful design detail that provides more visibility into your logbook data and also makes it easier to select the correct aircraft for your flight entry. Tap on any Aircraft to modify profile information or to view and edit any associated entries.

Logbook’s color-coded recency tracking now includes support for Certified Flight Instructors. To track your CFI currency, enter your instructor certificate number and expiration date in Logbook’s Qualifications section. You can view or edit your instructor certificate at any time by tapping on the summary in the main Logbook view. Recency tracking in ForeFlight Logbook is the fastest way to visually check the status of all of your currencies in a single spot.

Learn more about ForeFlight Logbook at foreflight.com/logbook.

New SiriusXM SXAR1 Features are Music to Your Ears

ForeFlight’s integration with the SXAR1 Aviation Receiver now includes support for streaming SiriusXM Satellite Radio. Pair your Bluetooth headset or audio device (like your aircraft’s built-in Bluetooth audio system) to the SXAR1 and use the ForeFlight interface to browse and select radio stations. The SXAR1 provides audio to one Bluetooth audio device at a time. The video above will get you started with setup.

In addition, SiriusXM’s Surface Wind weather layer is now available. To dive deeper into this new SXAR1 layer, check out this article written by our in-house Weather Scientist, Scott Dennstaedt.

Sfc-Wind-Analysis

Learn more about the SXAR1 and purchase information by visiting foreflight.com/siriusxm.

Create Custom Overlays With New User Map Shapes

Now you can import custom KML files into ForeFlight. KML (Keyhole Markup Language) is a file format used for geographic data that allows you to import shapes such as points, lines, and polygons into ForeFlight’s Maps view. User Map Shapes are more versatile than simple user waypoints, allowing you to designate specific areas on the map for your custom, navigation needs; flight schools or flying clubs can use User Map Shapes to delineate designated training areas or route lines on the map.

Import your KML files into ForeFlight via iTunes sideloading, then display them on the map by enabling them in the layer selector, just like with other map overlays. Watch our video tutorial above to learn more about importing KML files into ForeFlight.

Helpful New Device Disconnect Alert

In a perfect flying world, the wireless connections we use in the cockpit would never experience issues. But whether from a dead battery, connection issues, or human error, both portable and installed equipment can unexpectedly disconnect. ForeFlight’s new Device Disconnect Alert provides a prominent visual and audio alert that allows you to quickly troubleshoot and restore connection or switch to an alternative data source. This helpful new alert monitors both portable and panel-mounted avionics.

You can manage all alerts in ForeFlight in More > Settings > Alerts.

More Document Support: View Word, Powerpoint, and Excel Files in ForeFlight

ForeFlight Documents now includes support for Microsoft Word, Powerpoint, and Excel files. Import and save your POH, local procedures, common radio frequencies, or any other .docx, .pptx, or .xlsx file for easy access in ForeFlight’s Documents view. Connect your Amazon S3, Dropbox, or Box account to securely deliver document files and updates via the cloud.

Import your Microsoft Office documents into ForeFlight via iTunes sideloading, and easily share documents with your friends or fellow pilots with the Send To button.

MS Docs-short

Learn more about ForeFlight Documents at foreflight.com/documents.

New Chart Color Inversion, Logbook and Weather Enhancements in ForeFlight 8.3

We are thrilled to introduce an innovative feature that we know you’ve been asking for – you can now invert colors on charts and documents for better viewing at night. On the weather front, we have a new Color IR Satellite layer, and, for SiriusXM SXAR1 customers, Cloud Tops and Echo Tops are now included in your SiriusXM Pilot for ForeFlight plan. Also, we hope you have fun with sharing your flights online using our new Logbook Entry Summary. Read on for all the details of the ForeFlight 8.3 release, now on the App Store!

Protect Your Night Vision with Color Inversion for Charts and Documents

Color inversion reduces the glare of bright charts and documents when viewing them at night by inverting white and black elements on IFR Enroute charts, VFR Sectionals, procedure plates, airport diagrams, and documents. Text and chart symbols are prominent and legible without the annoying glare while viewing them in a dark cabin, minimizing eye strain and fatigue.

White and black elements are inverted, turning the predominantly white background black, and the black icons and text white. All other colors stay the same – airspace frequencies and altitudes, MOA boundaries, and Class B airspace all retain their usual coloring, making them just as easy to identify as before.

When used in conjunction with ForeFlight’s “dark” map theme and the brightness slider, color inversion provides more options than ever for creating an ideal chart solution for night flying. The setting applies independently to each app view, so you can mix and match where you see or don’t see inverted colors.

If you have a Pro Plus subscription, the Plates on Maps feature slightly brightens the plate so it stands out against an inverted IFR chart. Toggle color inversion on and off in the Map Settings menu.

Share Your Favorite Flights with Logbook Entry Summary

First solo cross-country? Animal rescue mission? With our new Logbook Entry Summary feature, you can turn memorable Logbook entries into an interactive, visual scrapbook that you can easily share with friends and family. Create your flight entry as you normally would (be sure to include photos!) and then tap on View Entry Summary. ForeFlight creates an elegantly styled web page, complete with photos, flight details, and a map view of your route. When viewed on a desktop browser, the map becomes interactive, allowing you to zoom in to see the route in more detail or use the layer selector to overlay different map themes. Back in the flight entry, tap on the Send To button (upper right) to generate a link you can share via social media, email, or as a URL.

Share your Logbook Entry Summaries with friends, family, and fellow pilots to keep them up to speed on your most recent flying adventures.

Logbook Enhancements: More Ways to Streamline Data Entry and New Type Currency Tracking

We continue to streamline flight logging to save you time and taps. It is now easier to lookup and select airport approaches. In your flight entry, tap on Add Approach. You’ll see the destination airport field is already populated, and, if you tap on Autofill Approach, you can easily select from the list of approaches for that airport. When you choose an approach, the Type and Runway fields are automatically filled in. In addition, when selecting the aircraft for a flight entry, a helpful Aircraft list displays your three most recently logged aircraft first.

Do you have multiple type ratings to track? You can now add them to your Logbook Currency Tracking for better visibility into your flight status. Tap on Add Currency Summary then Aircraft Type Currency to choose between General and Night currency (or both) then select your aircraft from the list. The list includes all of the aircraft that you’ve added to your Logbook. You can also set up a multi-model type rating currency tracker by selecting multiple aircraft from the list.

If you add a new aircraft, Logbook automatically notifies you if there are any missing aircraft profile details, ensuring complete and accurate tracking. Currencies are color-coded, so you’ll know your status at a glance.

Learn more about ForeFlight Logbook at foreflight.com/logbook.

ForeFlight is Your SIC with Helpful Destination Weather Frequency Callout

Checking the weather report at your destination airport is an important step in your landing checklist. Like a good co-pilot, ForeFlight anticipates your needs and automatically displays the weather frequency approximately 20 nautical miles from your destination airport. In the More > Settings > Alerts view, you can set the Destination WX Frequency Alert to be an audio alert, visual alert, or both. The popup stays active on the screen until you tap on it, so you can still easily get the frequency if you happen to miss the callout in your headset.

Topping Off the Weather with New SiriusXM Satellite Layers

ForeFlight pilots flying with the SiriusXM SXAR1 Aviation Receiver can now view both Cloud Tops and Echo Tops as part of the SiriusXM Pilot for ForeFlight subscription. If you have been considering a portable satellite weather solution, check out the SXAR1. You can purchase from Sporty’s or SiriusXM and take advantage of limited-time special pricing and rebates.

To learn more about how to interpret Cloud Tops and Echo Tops and also best practice on using the altitude slider, check out this article from Scott Dennstaedt (ForeFlight’s Weather Scientist).

New Full-Color Infrared Satellite Layer Gives You Better Awareness of Icing Conditions

The new Color IR Satellite layer is an alternative to the existing satellite layer (now called Enhanced Satellite) and is useful for identifying dangerous regions of supercooled liquid water that can cause airframe icing. This danger is especially present in the yellow and green depicted areas, which are just warm enough to support large amounts of supercooled water – turn on the PIREPs layer and you’ll notice that most icing PIREPs occur in these areas. This new layer is a powerful tool to add to your preflight planning, especially during the late fall, winter, and early spring seasons to help you avoid dangerous weather and icing conditions.

To dive deeper into the Color IR Satellite layer, check out this article written by our in-house Weather Scientist, Scott Dennstaedt.

New Climb Gradient Instrument
ForeFlight Climb Gradient Instrument

ForeFlight’s Climb Gradient Instrument uses GPS, ground speed, and vertical speed information to display your climb gradient in feet per nautical mile, allowing you to monitor your climb performance in real time. Activate this new instrument by tapping on the Instrument Panel and selecting Climb Gradient from the list.

ForeFlight Tops it Off with Two New SiriusXM Weather Layers

If you surveyed a group of IFR pilots, tops are likely one of the most requested features. Now, the wait is over. With ForeFlight Mobile 8.3, you can view both echo tops and cloud tops when connected to the SXAR1 SiriusXM satellite receiver. These two sought-after weather products are now included with the current ForeFlight Mobile SiriusXM pricing tier at no extra cost.

tops-selections

You can find the echo tops and cloud tops selections in between the radar and satellite layers in the ForeFlight Mobile app.

Cloud top height

First and foremost, the cloud tops depiction from SiriusXM is not a satellite image per se. Instead it depicts the height of the cloud tops in reference to mean sea level (MSL). Second, the cloud tops overlay does not infer the depth of the cloud layer. Consequently, a high overcast cirrus deck at 30,000 feet may mask one or more cloud layers below. Third, not all cloud layers may be shown, especially when there are regions of low-topped stratus or scattered to broken fields of fair weather cumulus clouds. So it’s important to always overlay the sky coverage markers to augment the cloud tops layer.

lowstratus-tops

Here’s a common limitation during a low-topped stratus event. Notice that the sky coverage markers around Houston, Texas indicate the presence of overcast skies, however,  the cloud tops layer shows the sky as clear. 

The cloud tops layer is always valid in the recent past since it’s based on observed data. It is typically updated with a new image once or twice an hour. Tops above 25,000 ft MSL are color-coded using blue, orange and red to visually enhance the highest tops. Tops below 25,000 ft are shown as simple shades of gray.

echo-tops-layer

The echo tops layer (left) may appear to look like a radar depiction (right) from a color perspective, However, it has a much lower spatial resolution than the composite or lowest tilt radar mosaic.

Echo top height

Like cloud tops, echo tops depict a height above mean sea level so it’s not a radar depiction per se. Simply put, echo top height is based on the highest elevation angles at which greater than 18 dBZ reflectivities are detected. Keep in mind that echo tops are primarily used by meteorologists to identify more significant storms by locating the highest tops. So it’s important know that echo tops are not the same as cloud tops. The actual top of the cloud is always higher than the echo top.

echotops

In this vertical cross-section of a thunderstorm, reflectivity is shown using colors similar to what you would see on a NEXRAD mosaic. Dark blue represents a reflectivity of 15-20 dBZ. So, the echo tops are likely found near the top of the dark blue regions on this image.

Filtering by altitude

On the ForeFlight Map view, both the echo tops and cloud tops can be filtered by altitude. When selecting either one of these layers, an altitude selector similar to the one that appears with the winds aloft layer is shown. This provides a quick way to determine tops that are above a selected MSL altitude. Initially, the altitude selector will be positioned at the lowest setting, namely, 0 feet MSL. This is the selection that will show all cloud or echo tops. Setting the cloud tops altitude selector to 10,000 feet, for example, will remove any clouds with tops below this altitude leaving only clouds with tops above 10,000 feet. Therefore regions without tops data are regions without clouds or tops that are below the selected altitude.

cloud-tops-filter

The altitude selector allows you to filter all of the cloud tops (or echo tops) below a specific altitude. In this example, all cloud tops below FL300 are removed leaving only those tops above that altitude. For convective tops, it’s also a good idea to overlay the lightning layer.

Echo top clutter

Echo tops received through SiriusXM do not go through a rigorous filter like you may see with the two radar layers. Therefore, it is normal to see echo top clutter around and near the various NWS radar sites as shown below. Typically these are not associated with real areas of precipitation and often occur during fair weather. Simply moving the altitude selector up to the next rung at 5,000 feet will remove many of these annoying areas of clutter.

clutter

Echo tops clutter showing tops below 5,000 feet will often occur around the various NWS radar sites. Here you can see clutter around the NEXRAD sites at Charleston, W. Va., Sterling, Va., Dover, De., and Mount Holly, N.J.

True Colors of IR Satellite

Now in ForeFlight Mobile 8.3, you have a choice between one of two satellite layers on the ForeFlight Map view. The legacy satellite layer was renamed to Enhanced Satellite and the new layer is appropriately named Color IR Satellite. For many, the new satellite layer will look quite familiar. That’s because it was created to generally match the infrared (IR) satellite images located within the ForeFlight Imagery view. Or you may have seen similar color images on aviationweather.gov. While there are some differences, this color IR satellite layer has a rather high glance value to depict the locations of significant adverse weather and help to locate the height of the cloud tops.

satellite-selection

The older satellite layer was renamed to Enhanced Satellite with the new layer now called Color IR Satellite.

Why another satellite layer?

Back in November 2014, you may recall that we added color to the global satellite layer. Color was added to enhance or highlight the highest cloud tops that are typically associated with significant large synoptic-scale weather systems and deep, moist convection or thunderstorms. This is especially critical when flying in regions where ground-based radar data is sparse or nonexistent. The new satellite layer takes this a step further by colorizing the entire satellite layer based on a discrete cloud top temperature (in degrees Celsius).

color-satellite-layer

The Color IR Satellite layer should be viewed along with the sky coverage markers. You will notice that many pilot weather reports of icing tend to occur in regions of yellow, green and very light blue.

As I discussed in this earlier blog post high clouds are very cold and emit less infrared radiation than warmer clouds near Earth’s surface. Satellite sensors measure this radiation and meteorologists calibrate this to appropriate temperatures. Knowing the cloud top temperature can help us determine the relative height of the cloud tops and more importantly it can help us understand when supercooled liquid water may dominate the clouds creating a nasty icing threat.

Cloud tops and icing

In this new color satellite image, purple and darker shades of blue are indicative of tops at high altitudes. At the other end of the spectrum, shades of red and orange are indicative of shallow clouds with tops near the earth’s surface.

color-scale-ir

Colors such as dark blue and purple on the left side of this scale (in degrees Celsius) represent the coldest (highest) cloud tops whereas colors on the right side of the scale represent the warmest (lowest) cloud tops.

To use the layer to determine the cloud top height over a particular region, zoom in on the area of concern in the Map view and note the temperature using the color scale above. Next, find the MSL altitude that corresponds to that temperature by referencing the local temperature aloft in that region. That gives you the cloud top height. For example, assume you were departing out of Garden City Regional Airport (KGCK) and wanted to know the height of the tops. Zooming in as shown below provides an orange color representing a temperature of approximately 0 degrees Celsius.

color-height-example

The color IR satellite when zoomed in over Garden City shows mostly orange in this area. This corresponds to a temperature of roughly 0 degrees Celsius.

Using the winds/temperatures aloft provided in the Garden City popover, find the altitude that corresponds to that temperature. Perhaps a more accurate approach is to use a tool called a Skew-T log (p) diagram like the one pictured below. Starting from the surface, work your way up the red environmental temperature line and find the first altitude that corresponds to a temperature of 0 degrees Celsius. In this case, that corresponds to an altitude of 4,285 feet as shown on the left. Additionally, the diagram confirms that saturated conditions occur below this altitude representing the presence of clouds with unsaturated conditions above. This kind of analysis will provide the necessary confidence that a climb to 5,000 feet MSL will get you on top of this cloud deck.

skew-t

A Skew-T log (p) diagram like the one shown here for the Garden City Municipal Airport is an excellent tool to help locate the cloud top height. This depicts a forecast model representation of temperature (red line) and dewpoint temperature (blue line) as a function of height.

The more important colors are perhaps shades of yellow and green and maybe even very light blue. Using the color scale below, clouds with fairly warm subfreezing cloud top temperatures are likely to be dominated by supercooled liquid water and represent a airframe icing threat.

icing-potential

The pale green, yellow and very light blue indicate regions where cloud top temperatures are in the  regime where the clouds below are dominated by supercooled liquid water representing an airframe icing hazard.

Don’t become complacent; clouds with colder (higher) tops can and do contain supercooled liquid water and may pack the threat of supercooled large drop (SLD) icing especially within deep, moist convection. However, these colder-topped clouds of darker shades of blue will normally be dominated by ice crystals or more likely be a mixed phase cloud (containing both ice crystals and supercooled liquid water). However, once ice nuclei begin to activate and ice crystals start to form in the cloud, the cloud tends to grow bigger ice crystals at the expense of supercooled liquid water which lessens the icing threat.

Masking out clear skies

As mentioned above, this layer is a close cousin of the static color IR satellite images found in the ForeFlight Imagery view. The static images show not only the temperature of the cloud tops using the same colors, but also the temperature of the surface of the earth. This can make it difficult to know where clouds exist and where the sky is clear. The main improvement is that the new satellite layer attempts to mask out regions where the sky is clear showing the map background in those regions instead of the surface temperature.

clear-vs-cloudy

Clear regions are masked out to show the underlying map below.

While this masking algorithm works a majority of the time, it can be difficult to get it right every single time simply using temperature alone. For example, anytime there’s a shallow low-topped stratus deck like the one shown below, the tops of the clouds may actually be slightly warmer than the surface of the earth courtesy of a surface-based temperature inversion. So the algorithm may have a difficult time discerning where it is cloudy or clear. So it’s important to always overlay the sky coverage markers to pick up on these issues when they occur.

bad-mask

For some low-topped stratus events, it’s not unusual for the masking algorithm to show clear skies as it did here in the Midwest. The best way to detect this condition is to overlay the cloud coverage markers or during daylight hours check the Enhanced Satellite which operates in the visible spectrum during this time.

So during the late fall, winter and early spring, give this new satellite layer a quick glance. It’ll provide you with a method to determine the tops of most clouds and to reveal where there’s a definite risk of airframe ice.

ForeFlight 8.2.1 Now Available on the App Store

ForeFlight version 8.2.1 corrects a few items in 8.2, including Stratus 2S Track Logs not being available in ForeFlight, an issue where filing a destination using a Lat/Long format (DDMMN/DDDMMW) caused a filing error, and an issue where the search disambiguation function did not always offer potential airways. We’re on frequency at team@foreflight.com if you experience any issues with the update.

Upgrades to Aeronautical Maps, Safety Alerts, Logbook, and More with ForeFlight 8.2

ForeFlight 8.2 includes more data in Aeronautical Maps, new in-flight alerts that keep you aware on the ground and in the air, Logbook enhancements with improved currency tracking, Garmin Flight Stream 510 connectivity, and more.

Click here to explore all the new features in 8.2.

‘Tis the season for airframe ice

Now that cold air has infiltrated a good portion of North America, it’s time to review one important aspect of airframe icing, namely, precipitation type. The three basic wintry precipitation types include snow, ice pellets (colloquially known as sleet) and freezing rain (also freezing drizzle). Surface observations (METARs) and forecasts such as TAFs typically report these precipitation types based on what’s reaching or expected to reach the surface. That’s a critical element to understand. If the surface temperature is expected to be even a degree or two above freezing, you may see a forecast for rain (RA) or drizzle (DZ) in the TAF instead of freezing rain (FZRA) or freezing drizzle (FZDZ). However, just 500 feet above the ground a serious icing hazard may be lurking. So let’s take a look at the three primary precipitation types and examine the temperature profile aloft that’s common for each.

Snow

Snowflakes are just collections of ice crystals that coalesce as they fall toward the Earth’s surface. For snow (SN) to reach the surface, there needs to be a deep moist layer that is, for the most part, entirely below freezing. More importantly, the key to getting snow is that the top of this moist layer must be sufficiently cold to produce those ice crystals. While there is no definitive temperature, ice crystals begin to dominate when the top of this moist layer is -12 degrees Celsius or colder. Precipitation continues to fall as snow when the temperature remains at or below 0 degrees Celsius from the cloud base to the ground. Wet snow is the result of temperatures slightly above freezing near the surface.

snow

A typical environmental temperature profile that produces snow. Image courtesy of NOAA National Severe Storms Laboratory.

Freezing rain

There are two processes in the atmosphere that can produce freezing rain (FZRA), namely, classical and nonclassical. The classic situation is what most pilots are taught during their primary training. That is, the precipitation starts out high in the cloud as snowflakes. These snowflakes fall through a melting layer that’s warmer than 0 degrees Celsius. If the melting layer is sufficiently warm and/or deep enough, it will melt those snowflakes turning them entirely into raindrops. That rain falls into a subfreezing layer and becomes freezing rain creating a significant airframe icing hazard.

freezingrain

A typical temperature profile that produces classical freezing rain. Image courtesy of NOAA National Severe Storms Laboratory.

The nonclassical case is a bit more complex to explain, but essentially the entire process remains liquid. In other words, the precipitation high in the cloud doesn’t involve snow. This occurs when the weather system isn’t terribly deep and the top of the moist layer is at a temperature warmer than -12 degrees Celsius. Warmer subfreezing temperatures at the tops tend to prefer a liquid process over the production of ice crystals. In the non-classical case, the entire temperature profile aloft may be below freezing or may also have a melting layer. Regardless of the actual profile, the non-classical case is strictly an all-liquid process. In most situations, you’ll see a lot of tiny drops that produce a nasty freezing drizzle environment. Surprisingly, 92 percent of the cases are nonclassical based on a study done by the National Center for Atmospheric Research (NCAR).

Ice pellets

Ice pellets (PL) are similar to the classical freezing rain case mentioned above, except that the melting layer is very shallow. This doesn’t entirely melt the snowflake, and the drop retains a slushy inner core. These slushy drops refreeze as they fall through a deep layer of subfreezing air near the surface, and eventually reach the ground as hard little nuggets that bounce on impact.

sleet

A typical temperature profile that produces ice pellets. Image courtesy of NOAA National Severe Storms Laboratory.

Keep in mind that ice pellets often indicate the presence of supercooled large drop (SLD) icing aloft. While the frozen pellets will bounce right off of your aircraft while in flight (taking a bit of paint with it), they are often mixed with other forms of freezing precipitation including freezing rain especially at altitudes right below the shallow melting layer.

Here’s a little bit of ice pellet trivia. The abbreviation for ice pellets used to be PE. However, when rain and ice pellets occurred together with rain being the dominant precipitation type, the surface observation includes the term RAPE. This was deemed to be politically incorrect in English speaking countries and the abbreviation for ice pellets was then modified to PL.

So the next time you venture out this cold season, pay attention not only to the precipitation types that are being reported or forecast but also get a sense of the temperature profile aloft.

Tips On Using SiriusXM Satellite Weather In ForeFlight

With the release of ForeFlight Mobile 8.1 you now have the opportunity to use the best portable en route weather system available courtesy of our partnership with SiriusXM Satellite Radio. The SiriusXM Pilot for ForeFlight subscription tier has been uniquely designed to provide all of the essential weather data during every phase of flight. In fact, within about 15 minutes of turning on the SXAR1 and connecting to the ForeFlight Mobile app, you’ll have seamless access to a comprehensive set of weather products well before you close the door on the cockpit and depart. Here are some of my tips to safely use this unique collection of weather data.

Hurricane Hermine

SiriusXM radar depiction of Hurricane Hermine as it approached the Florida coast in early September.

The SiriusXM source label

Knowing the source of the data you are using is paramount since weather data ages quickly. When connected to the SXAR1, you’ll see a SiriusXM label under the tappable timestamp button in the upper left of the Map view. Moreover, every weather product provided through the SiriusXM broadcast includes a source label in parentheses along with its relative age like the one depicted in the image below. This is similar to the ADS-B label shown when connected to Stratus. While connected to the SXAR1 in flight, always be sure to check for the presence of the SiriusXM label. Seeing this label will confirm that you are using the most current weather available.

siriusxm-tag-taf

Products received from the SiriusXM broadcast and displayed in ForeFlight will be labeled with a SiriusXM tag along side the product’s age as shown here for a terminal aerodrome forecast (TAF) for the Cape Girardeau Regional Airport.

Lightning

During the warm season, lightning from ground-based sensors is perhaps one of the most critical weather elements to have available in the cockpit. Any area of weather that includes lightning means there’s a darn good chance you will encounter severe or extreme convective turbulence in and around that weather. While most of the serious thunderstorms will be included within the boundary of a convective SIGMET, not all thunderstorms will meet convective SIGMET criteria. Moreover, thunderstorms often occur outside of these areas, especially during a rapidly developing convective event.

Lightning is broadcast over SiriusXM every five minutes and provides pilots with a birds-eye view of where the truly nasty convective weather is located. Moreover, both cloud-to-ground (CG) and intracloud (IC) lightning are part of this broadcast. It’s quite important that both types are included since many severe storms are often dominated by IC lightning.

With SiriusXM not every lightning strike is broadcast. Instead, a single lightning symbol is shown anytime one or more strikes have occurred within a generous 0.5 nautical mile grid. So when you pinch-and-zoom way in on the ForeFlight map as shown below, you’ll notice the lightning bolt symbols are aligned in this 0.5 nautical mile gridded pattern. ForeFlight retains the most recent 10 minutes of lightning data which tends to align with the most recent radar depiction very well.

SiriusXM Lightning grid

A zoomed-in view of SiriusXM lightning reveals it’s gridded nature.

Lightning is detected even in regions where radar coverage is not present. This can be extremely useful when flying outside of the NEXRAD radar coverage area. You’ll see lightning depicted in regions over the Gulf of Mexico and Caribbean as well as the coastal waters of the U.S. in the western Atlantic and eastern Pacific Oceans. It will also include lightning in Canada, Mexico, Central America and the northern-most regions of South America. Although there is SiriusXM NEXRAD coverage provided around Puerto Rico and the U.S. Virgin Islands (using the base reflectivity from the lowest tilt), having lightning shown in other locations in the Caribbean will help pilots avoid the nasty tropical convection that occurs in these highly traveled areas where there isn’t NEXRAD coverage.

lightning-south-america

SiriusXM radar coverage is available using the base reflectivity layer from the lowest tilt around Puerto Rico and U.S. Virgin Islands. You will also see lightning depicted outside of the standard NEXRAD coverage area as far south as the northern portions of South America.

Storm attribute markers

Pilots have become accustomed to seeing echo top heights and storm track identification markers in ForeFlight. With SiriusXM you’ll get those same NEXRAD storm attributes. This includes a generic storm marker with an echo top height shown in 100s of feet in addition to cells that have signatures of hail, mesocyclone and tornadoes using the symbols shown below. Echo top heights are only shown for tops 20,000 feet and higher.

markers

Storm attribute markers include hail, mesocyclone and tornadic vortex signature. Under the settings, these SiriusXM Storm Markers can be switched on and off as desired.

In most cases these storm attribute markers will also contain a direction and speed of the cell being tracked. Similar to the other storm tracks you will see depicted on the radar mosaic in ForeFlight, SiriusXM tracks will contain an arrow showing the direction of movement as well as the speed. If the cell is moving at a speed of more than 10 knots, you’ll also see two black dots depicted on the arrow that loosely estimates the position of that storm cell in 20 and 40 minutes based on the cell’s current speed and direction provided. The arrowhead represents the estimated location of the cell in 60 minutes.

Confusing Storm Attribute Markers

During a rapidly developing convective event or when thunderstorms are dissipating, it’s quite common to see the storm tracks for adjacent cells point in opposite direction.

While these markers provide additional information about a storm cell, keep in mind that there will be times when the storm tracks for adjacent cells may provide conflicting information as you can see in the example shown above. It’s unlikely these cells are actually moving toward each other. This typically occurs during the initial stage of thunderstorm evolution especially when there’s an area of rapidly developing convection. Animating the radar is perhaps the best way to note the direction of movement of an area of weather.

tvs-hermine

Shown here are several storm attribute markers to include mesocyclone circulation and tornadic vortex signatures from Tropical Storm Hermine as it passed off the coast of South Carolina.

Radar layers

The SiriusXM composite reflectivity and base reflectivity from the lowest tilt have the same 2 km horizontal resolution as you may have experienced with the regional radar broadcast provided by ADS-B. On the left is the regional composite reflectivity mosaic broadcast by ADS-B using the Stratus 2 receiver. On the other hand, the right side is the SiriusXM mosaic just a minute earlier. While the mapping of dBZ levels to color may be a little different for the two composite reflectivity sources, the overall spatial resolution is the same.

ads-b-vs-siriusxm

Regional composite reflectivity from ADS-B shown on the left and composite reflectivity from SiriusXM shown on the right. Both have a similar resolution.

There’s no doubt that the overall qualitative glance value is practically the same between the two radar depictions above. You’ll find, however, that the latest SiriusXM broadcast will be about 5 minutes fresher on average than what you get through ADS-B.

Partial radar refresh

You may occasionally notice that both of the radar mosaics may take a short period of time to completely refresh the Map view for the entire radar coverage area when a new NEXRAD broadcast is being processed. During the refresh, it will be common to see “Radar not available” briefly depicted over regions where coverage is normally provided as shown below for the base reflectivity mosaic from the lowest tilt.

Partial refresh

Partial updates to both the composite reflectivity and base reflectivity from the lowest tilt should be expected when the newest radar broadcast is being processed.

This is because radar data received by the SXAR1 rarely comes as a continuous frame of data. Often this data is broadcast in blocks over a short period of time. This is especially true for the base reflectivity mosaic from the lowest tilt. To avoid holding back the entire radar mosaic until every single byte is received, we decided to provide the newest radar in pieces as it arrives. Whether or not this occurs and how long it takes to provide a complete picture, depends on the amount of radar echoes throughout the entire coverage area. During times of high convective activity or large-scale precipitation, expect the refresh to be a bit slower, typically 20 to 30 seconds.

If you believe in Murphy’s Law, this refresh delay will rear its ugly head at the most inopportune time. If the refresh takes uncomfortably too long while in flight, you can always switch to the other radar depiction in the short term.

Also includes Canada

Unlike ADS-B, the SiriusXM radar depiction from the lowest tilt does include Canadian Doppler radar information as well (Canadian radar is not included in the composite reflectivity mosaic). You won’t see any storm tracks or echo tops depicted by Canadian radar data, but this does extend the radar coverage to the southern most part of Canada for those pilots that fly to this area frequently. In addition to radar, you will see winds and temperatures aloft depicted in Canada as well as METARs, TAFs and PIREPs.

Winds and temperatures aloft

The winds aloft layer is populated by model-based winds (not observations) from the SiriusXM broadcast. These are an accurate representation of the current winds at 3,000 ft MSL up to FL480 at 3,000 ft intervals. This is a similar presentation to what you will find with the winds aloft layer when connected to the Internet. Tapping on any wind barb will provide the wind direction, wind speed and temperature at the altitude selected.

winds-aloft

While in flight, you will see updates to the current winds once each hour. At this time there are no forecasts of winds aloft provided through SiriusXM valid beyond the current time. Consequently, the SiriusXM winds are not used in performance calculations, so you should anticipate using the pack feature to have an estimation of winds aloft along your route while in flight.

SiriusXM Aviation Weather and Logbook Currency Details in ForeFlight 8.1

With ForeFlight 8.1 we introduce support for SiriusXM’s powerful SXAR1 Aviation Weather Receiver, which supplies ForeFlight with high resolution radar with storm cell attributes and tracks, lightning, METARs, TAFs, AIR/SIGMETs, TFRs, and more. In addition, more of your logbook data is now in easy reach with Currency Details and access to Custom Field data in Reports. Download ForeFlight Mobile version 8.1 in the Apple App Store today!

Powerful, Portable Satellite Weather from SiriusXM

We’re excited to announce that we have partnered with SiriusXM to offer a portable XM weather solution to ForeFlight customers in the form of the SXAR1 Aviation Receiver. This compact, lightweight device wirelessly delivers a wide range of XM weather products to ForeFlight Mobile, including both composite and lowest-tilt NEXRAD radar, storm cell attributes like echo tops and tracks, AIRMETs and SIGMETs, TFRs, METARs, TAFs, winds aloft, and more, as well as GPS position. Future updates will unlock even more capabilities that will continue to make the SXAR1 a powerful inflight weather solution.

Check out Scott Dennstaedt’s article for some great insight and tips for using SiriusXM weather inflight.

SiriusXM SXAR1 and ForeFlight aviation weatherBecause it receives weather information from satellites, the SXAR1 bypasses many of the limitations affecting the delivery of FIS-B weather. The SXAR1 provides nationwide weather with no coverage gaps, minimum altitudes, or line-of-sight restrictions – all it needs is a clear view of the sky. The built-in rechargeable battery and Bluetooth connectivity eliminates the need for wires in the cockpit.

Coinciding with ForeFlight 8.1, SiriusXM is introducing the new Pilot for ForeFlight weather subscription package specifically designed for this integration. SiriusXM is also offering a $200 savings to pilots who buy the SXAR1 and activate the new subscription package.

Learn more at foreflight.com/siriusxm.

Currency Details and Custom Field Data in Logbook

ForeFlight Logbook continues to improve with new ways to access important flight data. Tap on Currency Summaries on Logbook’s main view to see in-depth information about which flights contribute to each currency type, and a brief description of the requirements for each currency type. Access to this neatly organized information makes it easier than ever to understand your currency and stay on top of it.

Tap on a currency summary to see detailed information about it

Logbook experience reports were also upgraded to include Custom Field data. Aggregated totals from any custom fields you’ve added to your logbook now appear at the bottom of experience reports.

Logbook custom fields in experience reports

ForeFlight and Apple iOS 10

Click here for the latest information regarding ForeFlight Mobile and iOS 10 compatibility.

ForeFlight Supports Intra-Canada and Cross-Border VFR Flight Plan Filing

UPDATE: ForeFlight supports filing VFR flight plans between Canada and the US in either direction. VFR flight plans should be opened in the country of departure and closed in the destination country. For a Canada-to-US flight, close your flight plan by calling 1-800-WXBRIEF or through the Tower. For a US-to-Canada VFR flight, close your flight plan by calling 1-866-WXBRIEF.

###

ForeFlight’s flight plan filing capabilities recently got a big boost with support for intra-Canada VFR flight plans.

VFR flight plans for routes within Canada are now sent directly to Nav Canada, allowing customers to both plan and file Canadian VFR flights entirely within ForeFlight Mobile or via the ForeFlight website. ForeFlight also supports cross-border VFR flight plans from the U.S. to Canada and all IFR flight plans within or between the U.S. and Canada, in either direction.

When filing a VFR flight plan within Canada, pilots are required to fill out the Destination Contact and Phone fields in the ICAO flight plan form. These fields specify who should be contacted if search and rescue actions need to be initiated. Pilots are also required to provide their license number, which can be entered after their name in the Pilot Name field (e.g. “Joe Pilot LIC 123456”).

Information required by Nav Canada can be entered in the Destination Contact and Phone fields

Pilots filing Canadian VFR flights are required to provide their license number, which can be entered after their name in the Pilot Name field as shown here.

As with other flight plan types, Canadian VFR flight plans can be amended or canceled within ForeFlight using the Amend and Cancel buttons at the bottom of the flight plan form. The Activate and Close functions are not currently available for Canadian flight plans, so a pilot must contact flight service to perform these functions. If a flight plan is not activated by phone, it will automatically activate at the estimated time of departure specified in the flight plan, as prescribed in Transport Canada’s Aeronautical Information Manual:

“A VFR flight plan should normally be opened with a Tower, a Flight Service Station, a Flight Information Center or a Community Aerodrome Radio Station upon departure to activate the alerting service. The pilot is responsible for extending or cancelling the flight plan if the flight is delayed or cancelled. If an extension or cancellation is not received by the proposed departure time, the responsible ATS unit will activate the flight plan or flight itinerary, using the Estimated Time of Departure (ETD) as the Actual Time of Departure (ATD).”

Learn more about filing in ForeFlight at foreflight.com/file.